Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4.

نویسندگان

  • J Liu
  • T D Prickett
  • E Elliott
  • G Meroni
  • D L Brautigan
چکیده

Opitz syndrome (OS) is a human genetic disease characterized by deformities such as cleft palate that are attributable to defects in embryonic development at the midline. Gene mapping has identified OS mutations within a protein called Mid1. Wild-type Mid1 predominantly colocalizes with microtubules, in contrast to mutant versions of Mid1 that appear clustered in the cytosol. Using yeast two-hybrid screening, we found that the alpha4-subunit of protein phosphatases 2A/4/6 binds Mid1. Epitope-tagged alpha4 coimmunoprecipitated endogenous or coexpressed Mid1 from COS7 cells, and this required only the conserved C-terminal region of alpha4. Localization of Mid1 and alpha4 was influenced by one another in transiently transfected cells. Mid1 could recruit alpha4 onto microtubules, and high levels of alpha4 could displace Mid1 into the cytosol. Metabolic (32)P labeling of cells showed that Mid1 is a phosphoprotein, and coexpression of full-length alpha4 decreased Mid1 phosphorylation, indicative of a functional interaction. Association of green fluorescent protein-Mid1 with microtubules in living cells was perturbed by inhibitors of MAP kinase activation. The conclusion is that Mid1 association with microtubules, which seems important for normal midline development, is regulated by dynamic phosphorylation involving MAP kinase and protein phosphatase that is targeted specifically to Mid1 by alpha4. Human birth defects may result from environmental or genetic disruption of this regulatory cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Transport of the Ubiquitin Ligase MID1 along the Microtubules Is Regulated by Protein Phosphatase 2A

Mutations in the MID1 protein have been found in patients with Opitz BBB/G syndrome (OS), which is characterised by multiple malformations of the ventral midline. MID1 is a microtubule-associated protein that stabilizes microtubules and, in association with the regulatory subunit of protein phosphatase 2A (PP2A), alpha4, provides ubiquitin ligase activity for the ubiquitin-specific modification...

متن کامل

P 97: Neurodegeneration Induced by Tau protein

Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...

متن کامل

Protein phosphatase 2A is targeted to cell division control protein 6 by a calcium-binding regulatory subunit.

The cell division control protein 6 (Cdc6) is essential for formation of pre-replication complexes at origins of DNA replication. Phosphorylation of Cdc6 by cyclin-dependent kinases inhibits ubiquitination of Cdc6 by APC/C(cdh1) and degradation by the proteasome. Experiments described here show that the PR70 member of the PPP2R3 family of regulatory subunits targets protein phosphatase 2A (PP2A...

متن کامل

Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation

Protein phosphatase 4 catalytic subunit (PP4c) is a PP2A-related protein serine/threonine phosphatase with important functions in a variety of cellular processes, including microtubule (MT) growth/organization, apoptosis, and tumor necrosis factor signaling. In this study, we report that NDEL1 is a substrate of PP4c, and PP4c selectively dephosphorylates NDEL1 at Cdk1 sites. We also demonstrate...

متن کامل

Mechanisms of the Scaffold Subunit in Facilitating Protein Phosphatase 2A Methylation

The function of the biologically essential protein phosphatase 2A (PP2A) relies on formation of diverse heterotrimeric holoenzymes, which involves stable association between PP2A scaffold (A) and catalytic (C or PP2Ac) subunits and binding of variable regulatory subunits. Holoenzyme assembly is highly regulated by carboxyl methylation of PP2Ac-tail; methylation of PP2Ac and association of the A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 12  شماره 

صفحات  -

تاریخ انتشار 2001